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Abstract 

Sediment transport in a gravel-bed mountain stream, the Upper Spanish Creek, 

California, was simulated with a depth-averaged, two-dimensional hydrodynamic and 

sediment transport model. The hydrodynamic model is based on the solution of depth-

averaged flow continuity and momentum equations with dispersion terms to account for 

the effect of secondary flow. The sediment transport model treats bed load and bed 

material as mixtures of multiple grain-size sediment. Changes in bed elevation are 

calculated by solving the sediment mass conservation equation. A laboratory experiment 

on sand-bar formation and transverse sediment sorting during an unsteady flow event was 

selected to verify the sediment-transport model. A comparison of the simulated bar/pool 

bed configurations and size distribution of surface-bed material with the laboratory 

measurements indicated the developed model is capable of simulating bed topography 

and non-uniform sediment sorting under unsteady flow. The verified model was applied 

to predict bed-load transport in the Upper Spanish Creek to identify areas of high-erosive 
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potential that require bank protections. Results of this verification process demonstrated 

the applicability of the two-dimensional hydrodynamic and sediment transport model to 

assist river restoration designs for gravel-bed streams. 

Introduction 

Restoration of impaired natural channels often requires a multi-dimensional, 

hydrodynamic and sediment transport model to evaluate restoration scenarios (Duan and 

Nanda, 2006). Depth-averaged, two-dimensional (2-D) models have been applied to 

many river restoration projects because a 2-D model requires less computational power 

and is cost-effective when dealing with practical engineering problems. Among 2-D 

models presented in the literature, some (Shimizu and Itakura, 1989; Molls and 

Chaudhry, 1995; Ye and McCorquodale, 1997; Jia and Wang, 1999; Duan et al., 2001; 

Hsieh and Yang, 2003) have solved the classical, depth-averaged Navier-Stokes 

equations numerically; others have solved the depth-averaged Navier-Stokes equations 

(Odgaard 1989a,b; Yen and Ho, 1990; Ye and McCorquadale, 1997; Lien et al., 1999; 

Duan, 2004; Duan and Julien, 2005) by including the secondary flow correction terms in 

the momentum equations.  

Since secondary flow moves toward the outer bank near the water surface and toward 

the inner bank near the bed surface, shear force, which moves in the same direction as the 

local flow close to the bed, deviates slightly from the direction of the mean flow 

(Engelund and Skovgaard, 1973). Secondary flow correction terms are needed in the 

momentum and mass transport equations to account for the effects on redistribution of 

flow momentum and redirecting sediment transport. The empirical relations given by 

Engelund and Skovgaard (1973) and Shimizu and Itakura (1989) are only valid for 
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predicting the transverse component of velocity near the bed. The method of Yeh and 

Kennedy (1993a) is similar to that of Odgaard (1989a) where distribution of the 

transverse component of velocity is linear and is related to its value at the free surface. 

Odgaard (1989a) obtained the transverse component of velocity by evaluating the 

momentum equations at the water surface. Yeh and Kennedy (1993a) obtained the 

transverse component of velocity by solving the moments of momentum equations. Lien 

et al. (1999) calculated the dispersion terms in the momentum equations, which are the 

integrations of the product from the difference between the depth-averaged and actual 

velocity along the verticals. Odgaard (1989a,b), Crosato (1990), Shimizu and Itakura 

(1989), and Darby et al. (2002) applied bend-flow models to natural meandering 

channels. However, these models have not been used to simulate sediment sorting in 

curved channels. Duan et al. (2001), Duan and Julien (2005), and Duan and Nanda (2006) 

have applied a 2-D model to simulate sediment transport in laboratory flumes and natural 

rivers where bed material is quasi-uniform sand. 

The objective of this paper is to report the application of an enhanced, 2-D flow 

hydrodynamic and sediment transport model called the EnSed2D model (Duan, 2004; 

Duan and Julien, 2005; and Duan and Nanda, 2006) used to predict the rate of bank 

erosion in the Upper Spanish Creek, California, a gravel-bed mountain stream. The 

model was first verified through an experimental case of non-uniform sediment sorting in 

meandering channels. Then, a bed-load transport predictor (Parker, 1990) was calibrated 

and verified by using bed-load measurements from the Upper Spanish Creek. Bank 

erosion consists of two processes: basal erosion and bank failure. The rate of bank 

erosion was calculated based on flow hydraulic forces, sediment transport near banks, 
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and the probability of bank failure. Reaches that demonstrated high rates of bank erosion 

were identified based on the calculation. Finally, the modeling results were used to guide 

the river restoration design. 

Hydrodynamic Model 

The governing equations for flow simulation are the depth-averaged Reynolds 

approximations of the continuity equation (Eq. 1) and momentum equations (Eq. 2). 
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where  and are depth-averaged velocity components; t is time; iu ju ζ  is surface 

elevation; h is flow depth; g is acceleration of gravity; biτ  are friction shear stress terms 

at the bed surface, written as Uu
h

gn
ibi

3
1

2

=τ , where U is the depth-averaged total velocity 

and n is Manning’s roughness coefficient; tν  is eddy viscosity; ν  is kinetic viscosity; 

and  are dispersion terms resulting from the discrepancy between the depth-averaged 

velocity and actual velocity with their expressions shown as follows: 

ijD

 dzuuuuD jji
hz

z iij ))((0

0
−−∫= +  (4) 

where  is the zero velocity level and 0z ji uu and  are depth-averaged velocities. To 

include the effect of secondary flow, two dispersion terms were added to the momentum 
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equations. The derivations of these dispersion terms were included in Duan (2004) and 

Duan and Julien (2005) where the stream-wise velocity satisfies the logarithmic law, and 

the transverse velocity profile of the secondary flow is assumed to be linear thus 

satisfying the distribution function of Odgaard (1989a). Details of the hydrodynamic 

model are provided in Duan (2004), Duan and Julien (2005), and Duan and Nanda 

(2006). 

Sediment Transport Simulation 

The sediment transport model treats bed load and bed material as mixed, grain-size 

sediment and divides bed load into ten groups. The mean size for each group is denoted 

by  where  represents the particle size where q percent of the 

sediment is finer. The mean particle size for each group was input as initial conditions. 

As deposition or erosion occur, mean particle size changes. Traditionally, the rate of 

sediment transport has been defined as the amount of mono-granular material transported 

by the stream. Sorting of surface-bed material or selective transport occurs when the bed 

surface is covered with mixed grain-size sediments. The sediment mixture could be 

unimodal or bi-modal depending on composition of the bed material. For a sand-gravel 

mixture, selective transport means that either coarser particles impose a hiding effect on 

finer particles or different size particles transport at different angles due to the effect of 

flow-induced shear stress and gravitational forces on a sloping bed. When non-uniform 

sediment is transporting through curved channels, not only are active deposition and 

erosion occurring but sorting is also occurring. Because each size fraction is affected by 

the presence of other fractions, the transport capacity of the kth fraction of sediment is 

related to the transport capacity calculated by using the mean-sized sediment, percentage 

100302010 ...,,,, DDDD qD
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of fraction present, and a hiding/exposure factor accounting for the interaction of each 

size class. A hiding function was used to quantify the influence of larger-sized particles 

on smaller ones. 

Bed-Load Transport 

Numerous equations are available to predict the fractional transport rate of bed-load 

sediment. To simulate non-uniform sediment transport in curved channels, a non-uniform, 

bed-load transport formula must be selected. Bed-load transport formulas (Meyer-Peter and 

Muller, 1948; Yang, 1984, etc.) originally were not intended for application to individual-

sized classes of a mixture. Therefore, a hiding factor, such as Einstein (1950), was used to 

allocate the total transport rate calculated by using the median diameter of each individual-

sized class. The hiding factor is an exponential function of the ratio between the mean 

particle size of each individual-sized class and the mixture employed in Einstein (1950), 

Rahuel et al. (1989), Armanini and Di Silvio (1988), and Wu et al. (2001). To simplify the 

procedure, shear stress based on the Meyer-Peter bed-load equation was employed for the 

experimental case (Yen and Lee, 1995) in the present study. In the case of the Upper 

Spanish Creek, a bed-load transport equation was chosen and calibrated based on field 

measurements of bed-load transport. A hiding function (Parker et al., 1982, Parker 1990) 

was adopted as a calibration factor to allocate the bed-load transport rate for the individual 

size fraction and is written as follows: 

 χη )(
50D

Di
i =  (5) 

where χ is an exponent. If 0=χ , the bed-load transport rate for each size fraction is 

independent of particle size; 1=χ , the bed load transport is size selective and proportional 
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to particle size. Additionally, secondary flow results in bed-load transport and deviates from 

the direction of mean flow velocity in meandering channel. The angle of deviation φ can be 

expressed as follows: 
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ββ  and s and n are the downstream and transverse directions; qs and qn 

are the volume sediment transport rates per unit width per unit time in the s and n 

directions; ubs and ubn are the corresponding near-bed flow velocities; the parameter τ* is 

the Shields parameter related to the downstream bed- shear stress τs by the relation 

 in which G is the specific gravity of the sediment; g is the 

gravitational acceleration; d is the grain diameter;  is the critical value of τ* at the 

threshold of motion; and η is the bed elevation, such that 
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n∂∂− /η  is the transverse bed 

slope. Different values  for coefficient β* and exponent m are available in the literature 

(Hasegawa, 1981). The present study adopted the relation of Engelund and Fredsoe 

(1982) where β* equals 1/1.6. 

The first term on the right side of Eq. 6 accounts for the effect of secondary flow 

velocity at the bed surface, and the second term quantifies the effect of transverse slope. 

Therefore, the direction of bed-load transport in Cartesian coordinates, denoted by x and y, 

can be obtained as follows: 
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where θ  is the angle between the centerline and positive x axis; φ  is the deviation angle; 

and yx αα and  denote the fractional components of bed-load transport in the x and y 

directions, respectively. 

Bed-Elevation Changes 

To simulate degradation or aggradation, bed-load transport rate is needed in the mass 

conservation equation. The bed-load transport equation within the mixing layer for each 

individual size class is solved as follows to calculate the bed-elevation change: 
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where pλ is the porosity of bed material; is the bed elevation associated with the kth 

group sediment; and  is volumetric bed load transport rate for kth size group. Eq. 8 

indicates that the change in bed elevation depends not only on the gradient of the bed-

load transport rate but also on the direction of bed load transport.  

kY

bkq

Boundary Conditions 

At the inlet, the total discharge is a constant for steady flow simulation. The total 

discharge is distributed along the cross section according to the local conveyance as 

follows: 

 
n

h
Kq i

i

3
5

=  (9) 

where  is unit discharge; K is the local conveyance coefficient; and n is Manning’s 

roughness coefficient. The current version of the model allows the specifications for the 

roughness coefficient to be denoted as roughness height or Manning’s roughness 

iq
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coefficient for each computational node. However, for the experimental cases described 

in this paper, the roughness coefficient was a constant based on the bed roughness 

conditions described in the original experiments. Because total discharge can be 

calculated as the integral of unit discharge across channel width, the following equation 

applies: 

 ds
n

hKdsqQ i
i ∫∫ ==

3
5

 (10) 

where s denotes the direction of channel width and K is the flow conveyance. At the 

outlet, surface elevation is set as a constant to reflect the observed surface elevation. The 

velocity at the outlet cross section is calculated based on total discharge and flow depth. 

At the sidewall, the logarithmic law is applied to the wall boundary. After the gradient of 

velocity is determined, the velocity at the sidewall is calculated based on the velocity at 

the adjacent internal node. 

Sediment boundary conditions including bed-load sediment at the inlet are 

determined based on the individual experimental case. At the side walls, the sediment 

transport rate is assumed to be equal to the transport rate at adjacent internal nodes. At 

the outlet section, the sediment transport rate equals the transport rate at the immediate 

upstream cross section, and bed elevation at the outlet cross section is kept unchanged 

through the computation. 

Test and Verification 

Case 1:  Non-Uniform Sediment Sorting in a Curved Channel 
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Yen and Lee (1995) conducted experiments in a laboratory channel bend having a 

central angle of 180°. Channel width was 1 m, and the radius of the centerline curvature 

was 4 m. The bend was connected to a stilling basin with an upstream straight reach of 

11.5 m and a downstream straight reach of the same length. A 20-cm-thick layer of sand 

with 8 different particle size groups with d0 equaling 1.0 mm and σo, (size deviation) 

equaling 2.5 was placed on the bed before each experimental run. Hydrographs with base 

flows of 0.02 m3/s and maximum peak flows of 0.075 m3/s were released at the upstream. 

The base flow provided the critical flow condition to entrain sediment having a mean size 

of 1.0 mm. Five experimental runs were conducted with five different peak flow 

discharges. Measurements of bed elevations were taken with a point gauge at the peak 

and end of the hydrograph for each experiment after flow was stopped and water was 

completely but slowly drained. Samples of the surface-bed layer were taken at six 

locations, and these samples were dried, weighed, and sieved for size gradation. This 

series of experiments demonstrated that maximum transverse slopes were formed at the 

experimental flume and sorting of non-uniform sediments increased with unsteadiness in 

the flow hydrograph.  

In the present study, we simulated experimental run #3, with flow parameters (e.g., 

discharge, peak duration) summarized in Table 1. The base flow discharge was 0.02 m3/s, 

which is equivalent to the condition for incipient motion of the median particle size. The 

peak flow discharge ranges from 0.0613 to 0.075 m3/s . Experimental results for 

bed topography and sediment-size gradation (Yen and Lee, 1995) are shown in Fig. 1. 

3 /m s

The hydrodynamic model and sediment transport model were decoupled for the 

simulations. The hydrodynamic flow field initially was obtained by simulating the base 
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flow condition with a constant discharge of 0.02 m3/s. Then flow hydrographs were input 

as the upstream boundary conditions, and the flow field was recalculated for each 

discharge. The sediment transport rate and sediment continuity equation were solved 

based on the solved flow hydrodynamic field. The time step for flow calculations is 

different from the time step for sediment calculations. The time step for sediment 

calculations is limited by criteria for the maximum change in bed elevation at each time 

step, which should be less than 0.2 percent of the flow depth, and the maximum sediment 

time step, which must be less than 60 s.  

During the simulation, the hiding function was employed as a calibration factor by 

varying the exponent χ  from 0 to 1.0. The closest matches with experimental 

measurements result when χ  equals 0.56. The transport of bed bed-load mixture 

becomes more selective as the value of χ increases. The simulated bed topography and 

mean sediment size for this run are plotted in Fig. 2. Results showed the formation of 

sand bars and the size distribution of surface bed material where sand bar surfaces have 

finer particles and pool areas consist of coarser particles. In addition, these results 

demonstrated the effects of the hiding factor in modeling selective sediment transport in 

curved channels. Since there is no analytical expression for the hiding factor, it was used 

as a calibration parameter depending on sediment-size distribution. 

Case 2:  Bed-Load Transport Simulation in the Upper Spanish Creek 

Bed-load Transport Equation for the Study Reach 

Selection of an appropriate bed-load transport equation is an important consideration 

in numerical modeling of sediment transport. Numerous equations have been developed 

to predict bed-load transport in gravel-bed streams; however, because the mechanics of 
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sediment transport are not fully understood, bed-load transport equations can be an 

additional source of uncertainty. In this section we discuss available methods for 

selecting appropriate sediment-transport equations and calibrating equations with field 

data from the Upper Spanish Creek. 

The Upper Spanish Creek is a heavily armored gravel-bed stream; therefore, only 

surface-based fractional transport models were considered (Parker, 1990; Wu et al., 2000; 

and Wilcock and Crowe, 2003). The total material transported during a storm depends on 

flow intensity, flood duration, proximity of flood to other events, and sediment supply. 

Because the selected bed-load equations are based solely on hydraulic properties and 

surface-material characteristics, the phenomena of bed loosening and/or armoring have 

not been considered adequately in the predicted results for bed-load transport.  

There are several noticeable differences among the sediment equations used in this 

study. The Parker (1990) equation is based on field data; however; bed-load is truncated 

at 2 mm. The Wilcock and Crowe (2003) equation, based on experimental flume datasets, 

accounts for the entire grain-size distribution and allows sand and gravel to move at 

separate rates. Both the Parker (1990) and Wilcock and Crowe (2003) equations scale the 

fractional transport rate by the same dimensionless parameter, 
( )

i

s

pu
g

3
*

1/ −ρρ
, which is 

based on the percentage of the ith-size-class sediment, pi, in the surface material. Wu et 

al. (2000) based their equation on both field and experimental datasets and scaled their 

fractional transport rate with the following expression: ( ) 31/ isi gdp −γγ . However, 

they did not include shear velocity, u*. The Wu et al. (2000) equation uses independent 

variables in the ordinate and abscissa parameters, while the Parker (1990) and Wilcock 
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and Crowe (2003) equations use dependent variables in both coordinates. 

All three equations include a function to represent hiding and exposure of different 

size particles relative to the overall size distribution in the surface sediment, expressed as 

the exponential of the ratio between the individual-size class and the mean-size class. The 

Wu et al. (2000) equation derived the hiding function as a ratio between the probability of 

hiding and the probability of exposure. 

For the present study, the Parker (1990) bed-load transport model provided the best 

match to the field data collected during the snowmelt season in spring 2005. Parker’s 

(1990) surface-based equation is an extension of the substrate-based model of Oak Creek, 

Oregon, described in Parker et al. (1982). Since this model was developed specifically for 

Oak Creek, its applicability to other rivers is limited by the constant parameters 

determined from the Oak Creek data set. The mathematical expression for the Parker 

(1990) equation follows: 

 ( ) iii FGFWW ∑ ∑== φ00218.0  and ( )isg g δωφφ 00=  (11) 

where W is the total transport rate and  is the dimensionless bed-load transport rate for 

the ith-size fraction defined as follows: 

iW

 
( )

i

ib
i Fu

gqS
W 3

*

1−
=  (12) 

where S is the ratio of sediment density to water density; g is acceleration due to gravity; 

qbi is the total bed-load transport rate per unit width of the ith-size fraction; u* is the shear 

velocity defined as ρτ /* =u ; and Fi is the portion of ith-size sediment in surface-bed 

material calculated after sand is removed. The function )(φG  is the fractional bed-load 
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transport equation expressed as follows: 
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where the constant M0 equals 14.2 and  

 )(00 isg g δωφφ =  and 
sg

sg
rsg

sg
sg RgDρ

ττ
τ
τ

φ == *
*

0

*

0 ,  (14) 

where τ∗sg is Shields stress based on the geometric mean size in surface material; φsg0 is 

the dimensionless Shields stress; Di is the geometric mean-grain size of the ith-size 

fraction; Dsg is the geometric mean-grain size of the surface material with sand included. 

The constant, τ*
rsg0 = 0.0386, is specifically determined from the Oak Creek field data. 

The parameter ω is defined as follows: 

 ( 11 0
0

−+= ω
σ

)σ
ω

φ

φ  (15) 

where 

 
( )

( )∑ ⎥
⎦

⎤
⎢
⎣
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=

2ln
/ln2 sgi DD

φσ  (16) 

and ω0 and σφ0 are straining functions of φsg0, which can be found in Fig. 5 of Parker 

(1990). The parameter )(0 ig δ  denotes a surface-based hiding function given as follows:  

 ( ) ( ) βδδ −= iig0  (17) 
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where 0951.0=β , sgii DD /=δ , and ∑= iisg DFD lnln . 

The Parker model is unique because it is based solely on field observations of bed-

load transport. Although this equation was formulated for the Oak Creek, Oregon, model, 

which utilizes one of the most comprehensive field datasets for bed-load transport 

(Milhous, 1973), empirical coefficients must be calibrated for applications to other rivers. 

Uncertainty may arise when the Parker (1990) equation is applied to a model that 

addresses mixed sand and gravel sediments, since the Parker (1990) equation excludes 

particles finer than 2 mm. Transport equations for sand and gravel mixtures, such as the 

Wilcock and Crowe (2003) equation, are relatively new and have not been tested widely 

or applied to natural rivers. In the Upper Spanish Creek, sand content in surface material 

is less than 10 percent, so the Parker equation should predict adequately most size 

fractions of bed load. Previous numerical modeling studies have employed successfully 

the Parker (1990) equation to predict bed-load transport in laboratory experiments and 

natural rivers (Sutherland et al., 2002; Cui et al., 2003a; Cui et al., 2003b; and Cui and 

Parker, 2005).  

The Parker (1990) bed-load model was calibrated using portable bed-load trap data 

and then verified with historical Helley-Smith data. Empirical coefficients in Parker 

(1990) were modified because the original coefficients were determined based solely on 

field data from the Oak Creek, Oregon, model. The exponent β in Eq. 17 was increased 

from 0.0951 to 0.1500 in order to reflect divergence from the “equal mobility” 

hypothesis, rendering finer grains more mobile than coarser grains. Bed-load 

observations indicate that the size distribution of transported material falls between the 

compositions of both surface and substrate material. Mobility that is truly equal occurs 
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when bed-load has the same size distribution as substrate (Parker, 1982). The reference 

Shields stress, τ*rsg0, was also adjusted from 0.0386 (Eq. 14) to 0.0195, an appropriate 

value for the geometric mean of the surface-grain size in the Upper Spanish Creek, which 

was 20.5 mm at the bed-load sampling site. Oak Creek has a coarser surface armoring 

layer with a mean size of 47 mm, so the reference shear stress is significantly reduced for 

the Upper Spanish Creek. 

The calibrated model produced a root mean square error (RMSE) value of 1.82 when 

compared with 9 observations of bed-load transport and passed through nearly half of the 

6 Helley-Smith data points used in verifying the model. The accuracy of the measured 

bed-load data used for comparison and calibration is limited by the accuracy in the bed-

load samplers used to collect the data. In this study, poor correlation between calculated 

and measured bed-load is attributed to limitations in the accuracy of field measurements 

for bed-load transport. 

Bank-Erosion Calculation 

Bank erosion consists of two processes: basal erosion due to fluvial hydraulic force 

and bank failure under the influence of gravity. Because the force of bank resistance 

varies with the degree of saturation in the bank material, the probability of bank failure is 

the probability of the driving force of bank failure being greater than the bank resistance 

force. The degree of saturation of bank material increases with river stage; therefore, 

frequency of bank failure is correlated to frequency of flooding. Consequently, the rate of 

bank erosion is due both to basal erosion and bank failure, and bank failure is a 

probabilistic phenomenon. The analytical equation for calculating the rate of bank 

erosion can be written as presented in (Duan, 2005): 
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where e is the factor that reflects the effect of bank failure, which incorporates not only 

bank geometry but also probability of bank failure, and E is the erosion coefficient from 

the derivation of the basal erosion formula expressed as follows: 
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The erosion coefficient, E , relates to the averaged bank angle, coefficient of lift 

force, and depth-averaged, equilibrium concentration of suspended sediment. The erosion 

coefficient e in Eq. 18 can be written as follows: 
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HH
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where H is the bank height at the critical condition; H’ is the bank height above the zone 

of lateral erosion; cβ  is the angle of the failure plane; Y is the depth of the tension crack; 

β  is the averaged bank slope; ξ  is the depth-averaged bank erosion rate due to 

hydraulic force; and η  is the probability of bank failure. 

The coefficient of lift force, , in Eq. 19 was calculated by using . The 

ratio between the actual and equilibrium concentration of suspended sediment is assumed 

to be 0.25 based on field observations. The concentration of near-bank suspended 

sediment can be measured with a suspended sediment sampler. The equilibrium 

concentration of suspended sediment can be calculated from flow parameters by using the 

'LC 178.0=LC
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Van Rijn (1989) formula. The angle of initial bank surface is assumed to be 70° (1.22 in. 

radian). The basal erosion coefficient calculated from Eq. 19 was calculated for both 

banks at each cross section.  

The actual shear stress was obtained from the hydrodynamic modeling results. 

Critical shear stress in cohesive bank material is difficult to determine due to complex 

electrochemical environments. Available formulas for determining critical shear stress in 

cohesive sediments finer than 0.1 mm are applicable only to irrigation canals and ditches. 

Cohesion in the bank material resulted from vegetation roots and layers of cohesive silt. 

Therefore, the approximate critical shear stress was calculated from the Shield’s diagram 

due to lack of an appropriate equation for calculating critical shear stress in cohesive 

banks.  

The critical bank height, H, and surface angle of bank failure, cβ , were calculated by 

trial and error. The coefficient, K, quantifies the depth of the tension crack, which was 

calculated as the ratio of depth in the tension crack to the critical bank height. The angle 

of repose used in calculating critical bank height was 35°. Effective cohesion in the bank 

material was 50 kN/m2, and the density of bank material was 2,650 kg/m3. The initial 

angle of bank surface was 1.22 in radius. Due to the lack of hydrologic records, 

probability of bank failure was assumed to be 26 percent based on other related studies of 

rivers in semi-arid and arid environments. 

Simulated Results 

To identify sub-reaches prone to bed degradation and bank erosion, the present study 

simulated a bankfull event. The bankfull event had a return frequency of 2 years, and the 
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rate of discharge was 130 m3/s and a duration of 7 days. Fractional bed-load transport 

rates were calculated by using the Parker (1990) equation with modified coefficients. 

Bed-elevation change was obtained by solving Eq. 8. Simulated flow depth and velocity 

were plotted in Fig. 3a and 3b and Fig. 4a and 4b, respectively. The maximum flow depth 

was approximately 7 m near the concave banks on the upstream reach and at one location 

on the downstream reach near the town of Quincy. The overall flow depth, denoted with 

green color, was approximately 3–4 m, and the lower reach was shallower than the upper 

reach. Flow velocity ranged from 0.16–2.4 m/s with the maximum velocity zone existing 

near the concave banks. These results indicated that bed-elevation change after a 7-day 

bankfull event was not significant.  

Bed-elevation change was plotted in Fig. 5a and 5b. Deposition dominated in the 

study reach. After this 7-day bankfull event, there was a 10-cm deposition over the entire 

study reach. The maximum deposition depth was 50 cm. Bed-surface degradation only 

occurred in a few locations near the concave banks. 

The distance of bank erosion at each cross section was calculated using Eq. 18 and 

plotted in Fig. 6. The maximum bank-erosion distance was 16 cm after the bankfull 

event. Sub-reaches where the bank-erosion distance was larger than 10 cm are marked 

with dark red lines in Fig. 7. The results showed that only several cross sections were 

eroded at the upstream reach. At the downstream reach, bank erosion occurred at 

numerous cross sections with an average bank-erosion distance of 5 cm at both banks. 

Therefore, the downstream reaches will be widened with increased bed elevation after a 

bankfull event. The highly vulnerable places for bank erosion are marked in Fig. 7. Most 

banks that experienced a high rate of erosion were located at the concave banks within 
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the study reach. 

In summary, simulated results produced by the EnSed2D model showed overall 

aggradation in the study reach after a 7-day bankfull flow event. Bed degradation 

occurred near several concave banks where the rate of bank erosion was high. According 

to these results, a preliminary restoration design was proposed. The objective of the 

restoration design was to reduce sediment aggradation at the lower reach and increase 

stability with bank-protection structures. 

The preliminary design includes a detention basin at the upstream with riprap 

structures emplaced at locations where the banks are prone to erosion. The sediment 

detention basin will be located between cross section #120 and #200. This basin will 

utilize the natural topographic setting thus increasing the channel width and lowering the 

elevation of sand bars and the floodplain. Flow passing through the Devil’s Elbow will 

slow down in the detention basin where gravel sediments are expected to deposit. The 

exact location and dimensions of the detention basin should be designed following a 

detailed field survey to determine locations, alignments, and dimensions of bank-

protection structures. The detention basin should be inspected and maintained annually at 

the beginning of the high-flow season to verify that adequate storage capacity is 

available. 

Other engineering measures, including riprap structures and short dikes, should be 

emplaced to protect banks from erosion. At the upstream reach, one long riprap should be 

emplaced immediately preceding the detention basin. This riprap structure will protect 

the concave bank from erosion and stabilize the transition from a naturally flowing river 

to a man-made detention basin. Two long riprap bank protections structures should be 
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emplaced in the downstream reach: one at the location where the channel turns to the 

northeast and the other at near the end of the study reach. Bank materials at both 

locations consist of fine sediment with silt and fine sands. Short dike structures may be 

needed with the riprap bank–protection structures to mitigate potential erosion at the 

banks. At other locations, several short riprap bank-protection structures are proposed. 

These riprap structures are intended to protect the banks from erosion and prevent the 

development of meandering bends. If necessary, appropriate bio-engineering approaches 

should be included in the design of bank-protection structures. 

This conceptual design was based on the 2-D EnSed2D modeling results. Detailed 

geometries for the proposed detention basin and riprap bank-protection structures must be 

determined according to the flow velocities and shear stresses acting on the banks. Upon 

approval of the preliminary design, detailed field surveys will be required to determine 

the locations, alignments, and dimensions of bank-protection structures. 

Conclusions  

The computational modeling results of flow hydraulics and sediment transport 

processes indicated that it is feasible to use a depth-averaged, 2-D model to simulate the 

hydrodynamic flow field and transport of sediment in mountain gravel-bed streams. 

There is no doubt that a three-dimensional, hydrodynamic model is needed to simulate 

the complex flow phenomena such as separation and reverse in mountain streams. 

However, a depth-averaged, 2-D model has advantages in being cost-effective and easy 

to calibrate and in requiring less input data for practical engineering applications.  

For the planning stage of a project, a 2-D modeling study can be used to eliminate 

unfavorable engineering plans and to assist in selecting feasible engineering designs. 
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Results from the present study indicated that (1) flow and sediment transport are complex 

because of highly variable geometrical settings; (2) sufficient data collection, especially 

sediment data, is needed to select a favorable sediment-transport formula; (3) bank 

erosion occurs primarily at the outer banks of a meandering loop; and (4) modeling 

results can guide the design of bank protection structures with riprap or other engineering 

measures. However, these engineering recommendations were based on a 2-D modeling 

study when no additional field data are available that can be used to calibrate the model. 

The geometrical data were extracted from 1-ft contours. The inaccuracies of input data 

and assumptions in the 2-D model indicated that the results from the field case are 

qualitative rather than quantitative. These results are sufficient for engineers to prioritize 

restoration designs. However, details of hydrodynamic flow and sediment transport 

simulation require extensive model calibrations and verifications using more refined 

contour maps and more accurate flow and sediment data during flood events. 

Hydrodynamic-flow-field and sediment-transport data must to be collected to further 

calibrate and verify the simulated results.  
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Table 1.  Hydraulic parameters of experimental runs. 

 

Peak Flow Qp (m3/s) Peak Flow Depth 
(m) 

Duration of Rising Limb 
(min) 

Duration of Hydrograph 
(min) 

0.0613 0.113 80 240 

 

 

Figure 1.  Experimental measurements of bed-elevation changes and sediment-size 

distribution for run #3.  

 

  

Figure 2.  Simulated bed-elevation changes and sediment-size distribution for run #3.  
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Figure 3a.  Simulated flow depth after a bankfull discharge of seven days. 

 

Figure 3b.  Simulated flow depth after a bankfull discharge of seven days (continued). 
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Figure 4a.  Simulated flow velocity after a bankfull discharge of seven days. 

 

Figure 4b.  Simulated flow velocity after a bankfull discharge of seven days (continued). 
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Figure 5a. Simulated bed-elevation change after a bankfull discharge of seven days. 

 

Figure 5b. Simulated bed-elevation change after a bankfull discharge of seven days 

(continued). 
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Figure 6.  Distance of bank erosion after a seven-day bankfull flow. 

 

Figure 7.  Reaches experiencing high rates of bank erosion after a seven-day bankfull 

event. 
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